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PART I

I - !lE3TBREE-PARAMINRICAL GROUP OF THE

1- Intioduction

IXTAKE D12?FUSERS

The present report ties in with the 5nvesti@tions on imlet diffusers
by P. Ruden. The theory developed by Ruden (reference 1) had produced
results which found excellent conf&mation in wind-tunnel tests (refer-
ence 2) and in spite of certain still-existing defects, are technically
very promising. The reasons for the new theory of the diffuser fores
indicated.by Ruden are twofold: first,)the arguments adduced ti refer-
ence 1 deal only with one specific operatimg condition, that 1s, a certain
ratio of mean velocitjywithin the diffuser to flying speed, while in the
present report say desired veloci~ ratios are tivolved; second, a
different choice of parameters and the ticreased possibilities of
variations result b diffuser fomns which csmnot be reconciled,at once
with Ruden’s theory. The first enables a theoretical check of the
measurements made with Rud.en’sdiffusers at veriahle velocity ratio, the
second permits the calculation of diffuser types which in many respects
are superior to Ruden’s diffusers.

So, while the present report seems to be a supplement and continuation
of Ruden’s report (reference 1), it is nevertheless a study by itself
end does not rest on the previous knowledge of Ruden’s theory, with
exception of the first part of section 6. The aerodynamic problem involved
is the followhg (reference 1, page 3):

A certain volume of air from the alr streszais to be intercepted
and.by conversion of speed to pressure or pressure into speed to be
conveyed to certain afrplane accessory devices. The manner in which the

Wi
ratio of the velocity inside the diffuser to flying speed ~ is regulated

m
is not involved here; the most important thing is to find the best possible

*“Zur Theorie ebner, sy?mnetrischerFangdiffusoren.” Zentrale ff.lr
wi.ssenschaftlichesBerichtswesen der Luftfahrtforschung des Generalluft-
zeugneisters (ZWB), Berlin-Adlershof, Forschungsbericht Nr. 1475/1
and 2, Septem%er 20, 1941.
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shape for the contour of the nose. This, on the other hand, postulates
that the usually inevitable increases of speed be as low as yossible, and
also that the wall thiclnees of the device be a minhmm. It h found that .
these two requirement@ are in a certain contrast to each other; generally
syeak%, a reduction of the increase of speed at the diffusers in question
can be attained only by an increase in wall thickness. One of the princi-
pal tasks is to analyze this relationship.

In conformity with reference 1, the following idealizations
are effected: The flow is assumed to be incompressible and perfect,
so that it can be represented h the conventional m%nner by analytical
functions of a complex variable; the diffuser is assumed to extend to
itiinity in flow direction.

2 - Hydrodynamic Map@ng And Introduction of the

Rxmllel S&ip as Reference Area &-

Figure 1 represents the contours of a plane, symmetrical inlet
diffuser and at the same time indicates the qualitative perfo?.manceof n

a correspondhg flow. The problem is to change over from”this schematic ~
figure to a quantitative one. This is accomplished by the method of
hydrodynamic mappin&J.

..
Hydrodynamic ~ppimg is, as is known, ‘confomnalmapping in which

one space, along with the flow in that space, is transfozmwd into
another. Three functions are involved in the analytical representation:
The stream function (the complex stream potential) l?(z)of the original
space, the mapping fmction C(Z) which iS considered to we a sP-
on the z-plane to a space on the ~-plane, and the stream function a(~)
of the transformed.region; F(z) = 0(<), that is, the values of the
stream function are simply transplanted from the z- to the !-plane.

The “complex velocities” w(z) and u(~) are given by w = # and

‘0 and related accordingly bycl)=—
d!

or (1)

.

.
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It is to be borne in mind that only the conjugate complex value of
the “complex veloci~” represents the velocity vector.

A flow defined by an analytical function canbe mapped
hydrodynamically ina number of ways. The two most frequently employed
mapping methods are:

(1) ~ =F(z), tiwhich case Q({) = (, that is, the mapped space
sti@y contains the basic flow, a horizontally directed parallel flow
with the constant velocity 1. Any flow can thus be transformed to the
basic flow.

(2)! =*= W(Z). This is the hodograph mpping method

successfully applied by Ruden to the inlet diffuser problem.

h the following, a different mpping method is UEed, since, as
pointed out in the introduction, an Minite series of stream functions
corresponding to the different veloci~ ratios wf/wm must be considered

for each-inlet diffuser, rather than a single stream function, with
which, of course, the above special mapp5ngs are invalidated. The image
space is so chosen that the group of stream functions permits the
stiplest possible representation. A few trials confirm that the parallel
strip affords the simplest solution.

Assume that the function ~(z) maps the simply connected space
situated outside the contour of the inlet diffuser single-valued and
conformably on to a parallel strip boundedby the straight line T(c) = kfi;
The ltie of symmetry of the z-space, taken parallel to the real axis,
is to become the real axis of the ~-plane, and the direction
of flow is to remain the same. In the z-plane the line
of symmetry connects the two hfinitely remote boundary points of the
space; they become with their surroundings the two tips of the paralLel
strip. Figure 2 represents the flow in the (-plane diagr~ticaUy;
the general function o(~) which produces such a flow is.given by

TO find this

on the plane

ex~ression, the-parallel strip is mapped by et =~1

cut along the negative half of the real axis

(2)

and the flows arising h the E-pWe calculated. 6ince @ ‘(~) by
analytical conttiuation beyond the strip edges obviously has the
period 2Tci,the derivationof the transplanted stresm function O1(C1)

must be unique. Its singularities must be looked for at O and w;
at O, corresponding to the left strip tip, a.source and dipole appear
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combined, while at CO,arising from the right tip, a sink occurs. As a
result, the general ex~ression of ol(~l) C= be immediately expressed

in the form 01(~) =a log ~1 + b with positive a. The outflow
y

direction of the di~ole -pointsto the right, that is, b must be negative
(real). Putting a = cl, b = -c2 ad reverting to the ~-@ane, gives
exactly the above expression.

.

.

—

—
The stagnation points are obtained by setting the derivative

equal to zero. From

@’(K)= q + c2e-c =0

follows e-~ . ~. Putting ( = E + i? and accordingly

e %‘C=e-E-iV=eR (COS~ - i sin ~) gives the conditions

e-g
c1

and e-E sin q . 0 for the Sta~tionpOintS.Cos q “= —
Cgj

Therefore, sin q = O, while cos q is negative, which in
lhuiting ~ to the parallel strip means v = tn. Accordingly

also: e-5=2 @ ~=log% ~ (natural logarithm). On ~utting
C2

to = log : c C2
+ fii,that is, eo= — the expression for @(~) cmbe

c1‘

written in the form

(3)

.

.-

—

or since no additive constant is involved,

The system of the streamlines is not &anged by a change in the
constant cl; if go is varied - obviously T(!o) must remain

equal to n - the system of streamlines experiences a s&le parallel
displacement, as shuwn by the last equation.

(4)

.
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3 - Determination of @e Differential Quotient of

Function z(g) Which Maps the Parallel Strip

on the Outside of the met Diffuser

the
.

Given the function z(~) which maps the parallel strip on the
outside of the Met diffuser, the transplanting of the general stream
function 0(~) makes the general stieamfunction F(z) availalle. As
regards the derivation of the function z(~) the following may be stated:

‘z is, on the whole, real andAlong the real,sxis, —
d~

positive. Running through the straight line T(c) = n from left to

right, ~ assumes at first negative (real) values in correspondence

with the straight part of the contour, then, in correspondence with
the curved nose contour, it asswnes values which geometrically expressed
belong to the lower half-plane, ad lastly the values become positive

(real): Lett3ng ~ shfit leftward to infinity, ~ must, in amount,
dg

increase beyond all ltiits, while at unlimited distance toward the

U tends toward a finite (positive) lhit~ value. Further
‘i@t’ z
identification is not possible without a certain arhitiariness. The

following assmption is made. Suypose qmtity ~, when ~ passes

through the upper right edge of the pemallel strip, runs through a
line whose center piece located in the lower hal.fplsneis half of an
ellipse symmetrical to the real axis (fig. 3).

Altogether, $& considered as function in the parallel strip, gives

then a confo~’1 mapping on the shaded space represented h figure 3.
For the ftist, the mapping of the total boundary follows from reasons
of s~etry, then, the inside mapping according to the principle.
of the characteristics of the boundary.

Of the multitude of potential diffuser forms, one series defined
by a finite number of paraeters was selected. The ellipse is, for
shape and position, given %Y three real w~ters; the right-~ded

end point of the line, that is, ltic++ 4$-, giv:s a fourth parameter

and a fifth is ultimately afforded by the possibility of effecting
any desired parallel displacement in the ~-plane in direction of the

“ real axis. Thus five real constants enter the general

function ‘.
d~

But, since the parallel displacements in the ~-plane “
. ,
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are unimportant and ~ itself may be multiplied ‘bymy positive factor. d<
without modifying the respective diffuser form, the factual result
is a three-parametriccontinuum of inlet @&ffusers.

& is obtained by mapping theThe analytical expression of
d~

parallel strip through

(5)

on the t-plane cut along the negative half of the real axis.
The right tip takes the vicinity of the zero point, the left tiT that
of the infinitely remote point. The next problem of transplanting the
plane thus cut on the space of figure 3 is essentially synonymous
with the problem of mapping the plane fitted with a finite straight
slit on the outside of em elJ.ipse. The so ution is predicated on the

iknowledge of the mapping attained by z + -. This function transforms
2

the outside of the unit circle in the plane cut along a f-inite
strip, and it maps the outside of the circle \ZI = R> 1 on the outside
of the ellipse; the infinitely distant point remains fixed. The outside
of the circle ]zI = r< 1 changes into an elliptically bounded space;
this, however, lies in part as two-lobed space above the ylane, which
is to be avoided in the present instance. To paes from the slit area
to the outside of an ellipse involves essentially, that is, apart from
similarity napping, the application of the tiverse function of z + ~

which gives a circular space, then, after a second similarity mpping,
the transfer to the elliptical boundary according to z +*. Through

the shnilarity mapping certain real constants enter in the formulas,
which must be subjected to certain restrictions in order to be certain
to obtain an, on the whole, single-lobed image space. The mode of
calculation is as follows:

Assume that the end points lie at -tl and -t2. (tp>tl> O). In

&t case the slit is widened outby

~ “;’2t’=’+ (t+t~)(t+tz)+

—

—

—

.-

-.
.*

—

.

.

.
<“



NACA ~ 1267

in a circle the center of
result is easily checked,
root is purely imaginsxy,

Itq = It

7

which is the zero point of the t’-plane. Thi&
because for -tp < t < -tl the square
and

-y+t=m==+tl+t2

= y’(t++)2 - ct+tl,ct+tJ

that is, It’ = constant. The function t“ = at’ + ~with a>O

& z
anal): O, obtained from z + * by s~larity mapping results in the

general ellipse whose axes coincide with the coordinate sxes. To the
w right-hand end point of the diameter of the circle, hence

lip
to t’

- Iq
= —, there must correspond a “positive” value, that is,

2

a+-tl+ ?b >0

2 t2-t~
(6)

in order to prevent a two-lobed overlap of the ~lme at a~ point by tk
image space. Ltiewise, the uppermost point of the circle,

t’=i
~-t~

, must take a petit on the upper half plane, that is,
2

tp - t~
a

2 -*’”
(7)

.



8 NACA TM 1267

The prefix of b decides which of the
principal axis. The desired quemtity

to t“ + c (c real).

tl + t+
t+—

2+

$:ordinate axes becomes the

x
must gmerally be put equal

1t+t~)(t + tz)

+ -b
t+tl+~ +C

—+ j(t+tl)(t +,t~)
2

= at+p~t+tl)(t +&J+ 7

with

a.a+ 411

1

(tp - t~)?

%+t2+c7 =a—
2

kb
P=a-(t2

- t~)z

The expression of ‘z therefore actually contains five
x

constants, which must satisfy the following conditions;
tz>tl>o. The conditions (6) and (7) are equivalent

P> O;a= ~ itself then %ecomes positive. Lastly,

.

.-
.-—
.—

—.

—
.

(8)

.

.

(9)

real

first,
to a>O,

the
c

ellipse must comprise the zero point even after the trsaslation
effected by the constant c. This is the case only when the values

.

of $ relating to t = -tl and t . -t2 are posi+ive and negative,
=

respectively. From . :.–

-atl+y>o
,

.
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-a~+y<O

f OSLOWB

atl<y<ata (lo)

The square root must be calculated yositive for positive t. In the
analytical continuation along the dissected t-plane, the values
obtained for t < -~ are negative, while the values in the
Inter+al -t2 <t < -tl relate to the positive and negative halfplane,

depenMng upon whether the real-axis is qppr~ched from above or below.

4.- Deteminationof the Mpping Function ItseM by

Integration. Calculation of the

Contours of the Inlet Diffuser

me function z(K) itself is found by stiple intewation. Fkom

t+tl)(t+-t2)+7

andt=e- $ that is, c= - log t follows
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.

i

t+t~
The last in.tegkalis changed by the introduction of —

t+t2

as auxiliary variable to an integral of a rational function and .

computed direct. Altogether the result is

z = -ctt - P @ + tJ(t + %)

- 13(t~++ WJ (i-t+tq

+k-)+ Constmt

—

+ v=%)+ql% log (W=J
, (11)

The square roots containing t are all chosen positive for
~ositlve t-values, with which they are then unequivocally defined over
the dissected t-plane in the sense of the analytical continuation;

m is positive also. For the logarithmic functions which, like the

square roots in the dissected t-plane, are”unbranched, the prticipal
values, that is, the values whose imginary parts lie between -ai
and fii,are visualized as being inserted. If the additive constant
is chosen real, the sJcisof the inlet diffuser coincides with the
real axis.

On letting t run along the lower rlm of the negative
half of the real axis, z describes the upper contour of the desired
diffuser. The intervals (0, -tl) and (-t2, -CO)give the straight

sides, the center piece (-tl, -~), the nose of the diffuser,

x=

Y=

w

. .
.

-.

.

Putting z = x -!-iy,

-at - 7 log ItI.+constant,

t)(tp + t) + P(tl + t2) arc tan w
@-TT

KG=
-2P@Ji!rctan

{m) + Cons&t .

—
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.

.

is valid along the
additive constants

center piece, or, if t = -T (tl ~ T S tp) and both
are taken at zero

The roots must be extracted positive, and if the argument, as here,
varies between 0 and W, the principal branch from O to ~ is

chosen for the src tan functions,

The formulap (12) define the upper half of the diffuser.
Horizontal straight lines are drawn toward the right to infinity from
the two end yoints of the nose givenby T = t~ szld T=t.

2

x= atl -Ylogtl, y=o

aria

The complete detemnination of the diffuser musk include
width 2h; from (U) follows

g
2

the inside

Of the five constants which define the individual diffuser only

U is titiplied hy athree have my essential significance. If
. dg
constant positive factor and a real constant is added to ~ , the
diffuser form remains the same. But adding a real constant to ~ is
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reflected in t as multiplication by a positive constant. So, without
causing any substantial change, the expression

Cal
The

(t +tl)(t + t2) +7 (13)

be multiplied by h >0 snd t itself be replacedby ~t(~> O).
expression (13) then becomes

t +I#tl)(t +J%2) +L7 (14)

Since a and 7 are positive, because of (6) and (10), X =;

andp= ~ and (14) reduces k
a’

t+l+p’

with

~(t + t~’)(t + tt2’)

or expressed in different

The three quantities !3,

notation

(t + tl)(t + tJ

tl) and t2 satisfy the conditions.—

t2>l>t~>o

..

(15)
..

.

(16)

.

—

and

D>o
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So the formulas

x= T-

for computing the contours read

10g T

13

~t2-T

-2Pij~ arc tam
v-

-

(17)

5 - Calculation and Representation of the Velocity

Distribution Along the Contours

The general inlet diffuser flow is obtained by transplanting the

general function ~(~) = c~~ - c2e-K according to (5) and (11) in the

z-plane. The ?mgnitude of the velocity along the contours is the
principal point of interest. The complex velocity in the z-plane is
given by

(18)

?
+ cpe-g= dz=t+l+ P~(t+tJ(t+tJwhere

d = c1 c1 + c2t and
z.

in the simplified method of writing. At the boundary t is negative

(real). Draw a t-axis and plot the amounts of ~ and ~ against it
dc d{

as ordinates. The graph of ‘0
~

consists of two straight lines,’

or more exactly, pieces of straight lines, rising from the
,

c1point t = -— of the t-axis at the same angle toward both sides;
C2
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one straight line withdraws toward the upper left to infinity, th& other
terminates at height c1 of the ordinate axis. The amount of

x
can be formularized as folllows:

(t +tl)(t +%) for t~tl

H(iZ~=

All square

b-t-l+P (t +tl)(t+t2)fort~-t2

roots are positive. Accordingly Q&II isrepresented by
dc.-

a curve that appears built up from three arcs. The two outside ones
are hyperbolic arcs, while the tiside one can relate to any conical
section and can even be rectilinear.

Individually the following applies: ConformaKQ to ths
condition t2 >1 > tl >0, tl and t2 are chosen fixed, so that

the two end points of the central arc which are at the sgunetime the
, connecting points of the outer arcs are defined. The ordinates

are 1 - tl, sad t2 - 1. On exsmhation of the entire group of

curves obtained for variable P (fig. 5) it is seen that the case 13= O,
regarded as ltiiting case, since 13 must be,positive by assumption,
results in a pair of straight lines. As 13 increases the ordinates
along the entire line increase. The outer hyperbolic arcs deviate in
their connecting points with vertical tangent ahd become steeper and
steeper with increasing ~. The inside piece cancels out hyperbolically,
which is, thet-axis is the secondary axis for the first appearing
~erbolas. The curvature of the arc decreased continuously, If 13
reaches the value

.

-
.

—

.

.

.-

—

,

(20)

.
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the hyperbolic arc becomes the straight connection of the end points:
at further increasing 13 the arc becomes concave downward. In
general, /30 is less than unity. The P values lying between 130

and unity give hyperbolas for which the t-sxis iS principal axis.
B = 1 gives a parabolic arc with the t-tis as axis of symmetry,
and 13S1 results in elliptic arcs with progressively increasing
steepness. The special case J30= 1 occurs only for tl + ~ = 2.

The end points of the middle arc exe then at the same level and the
convex hyperbolic arcs appearing for small 13 pass over the straight
line corresponding to j3= 1 directly ti concave elliptic arcs.

The amount lw~ of the boundary velocity follows _by(18) by
difision of the two functions of t; the numerator function is
represented hy the straight line, the denominator function is represented
by the tiiple product of conic-section arcs.

6 - Comparison With Ruden’s Investigations

Ruden (reference 1) used the holographic method of mapping throughout
his experfients; the most general space of the w-plane (w = complex
velocity) taken into consideration by him is a circle the center of
which lies on the real sxis and which efiibits two
radial ticisions along the axis. The space is shown in fi.gure6.
The slot ends w. and wi correspond.to the flight speed.md the

terminal speed bide the diffuser, that is, the speeds relating
to t== andt=o. The values WI and W2 Ucate the velocity

at the end potits of the curved pert of the dtifuser wall. According
to Ruden:

(21)

The amlytical relation between w and t is readily indicated.
The discussion is restricted to the lower half of the t-plane and of
the w-circle, which are clearly and conformal.lyreferred to each other.
Excluding, in the first instance, the appearance of eq~ity si~
in (21) gives the point coordtition

w
Iq and t2>tl signify any two positive values.
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t+tl
Mapping the lower half plane ly t’ = — in itself in such

t++

a way that -t~ and -~ change to O and ~, while the value

t’ = 1 corresponds to the value t = m, O

root tt’= r t’ results in a quadrant (main
for positive t’) and a ltiear mapping with
are written in the form,

w= at” - b
Ct’r+ d

finally gives the desired w-space

The

The
the

Accordingly

the formation of the square

branch of the sqyare root
real coefficients, which

above table of values then appears as

.-

.

t 0 co -t~ -t*

(22)

value w = 03 corresponds to a negative t”. From it and from (21)
following conditions for the coefficients a, b, c, d are deduced:

--

0 (23)

.

._
—

.=

.

.- ..

.

—
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The first three inequalities indicate that all coefficients have the
sue sign; without restriction of generality ~ey s@~ be positive”
The last inequality signifies then

rt~a>b — (2h)
‘1

By naking the numerator in (22) rational,

(a2 . b2) t + (a2tl - b2t2)
w=

(ac +bd) t + (ad+ hc)~(t +tl)(t+~) + (a@+bdt2)
.

Quantity a2!- b2 is yositive by reason of (24). Since the
coefficients a, b, c, and d may be multiplied by any positive
constant, without modifying w(t), a2 - b2 = 1 (25) UY be assumed.
Therefore:

t+to
w=

t +tl)(t +tJ +C

with

to = a2t1 - b2t2

A =ac+bd

B .ad+bc

c = actl + bd.t2

(26)

(27)
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A, B, C, and to are positive. On comparing the
(26) with

——

-. NACA TM

expression for

Czt + c1
w=

(+J+tl)(,t+%) +7

which can also be written in.the form

t-+to
w= C2

(t + t~)(t +tJ + 7’

where the denominator is used again in fuU genemlity,

Y267
.

._

w in

.

. —

— .

(28)

it is seen that
all the forms considered by Ruden are included. The o~ conditions
which the present coefficients, aside from that of being positive, must
satisfy are: t2 > tl >0 and (10); t2 >tl >0 is also satisfied

for (26) and from (27) follows immediately the inequality corresponding
to (lo)

Atl<C<A~

Two more facts stand out:

(1) The numerator in (26) is defined when the denominator is
lmown; this is proved by (25) and (27). But the zero place of the
denominator in (28) remains arbitrary for given numerator (CO).
(The factor C2 is natural~ unessential.) me limitation in (26)

is ass,oclatedwith the nature of the holographic method, which momentarily
comprises o?uy a specific operating condition and does not detract from
the generality as far as the diffuser forms are concerned.

(2) It is readily seen that for specified values of tl and t2
the formulas (25) and (27) do not permit the ratios’A : B : C to vary
in the same manner as the ratios a : 13:7. Thus attl-=landt2=2

3the proportional equation A : B : C = 1 : 1 : p can cer’~ahly not

bemade to agree with (27), while leing able to yut a = 13= 1 and

—

——
—
..

.—

..

—

●

y =~. To -&is extent the formula is also more general as regards

,
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.

*

diffuser forms than Ruden’s formula (h reference 1) although the
number of constants is not greater: Ruden’s study of diffusers showing
a constant speed along the nose contour in normal operating condition
requires, according to the present theory, linearity of the cwve

II
of b representing the central ~ieceo The nornvaloperating conditions

z
further require that the zero place of the numerator functionof (28)
lie, geometrically speaking, in the straight extension of the central
piece. The diffusers characterized in the foregoing by ~ = ~. corresYo~
accordingly to these special Met diffusers. The degree of generality
of these investigations surpassing Ruden (reference 1) in two ways, is
especially clear. On the one hand, the numerator function ti the
expression of w need not disapyesr exactly at the t-place lying in
the extension of the center piece (nmre general operating condition), on
the other, this extension need.not as in Ruden’s report, intersect’the
t-axis at all in a point with negative atscissa (more general diffuser
forms).

II - TKEORY OF OFT’IMUMDIFFUSERS

1- The Characteristic Quantities wi, w., wm and W*5

Earlier in the present report the complex velocity of the general
inlet ‘diffuserflow was defined and the amount of the velocity along
the diffuser contour analyzed. This amount is hereinafter designated
ly w; the complex velocity previously denoted by w does no longer
appear. With s(t) as the magnitude of the q~tity ~ along the
boundary dg

(t +tl)(t +t2) for t z-tl

s(t) ={4(t+ljp - P2(t + tl)(t + @) for -% >t 2 -% (29)

[

-t -1+

It is lorne in mind
as function of t

that t assumes only negative values. so far w

.

.

w(t) . LLJ4 :c2!L#!
s(t) (30)
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.

)h the subsequent study only velocity ratios wU.1.%e the controlling
factors. Without restriction of generality C2 can be put as C2 = 1.
To the values t = O and t = -m correspond the velocities w~ and Wm;
they are readily obtatied when to, tl, t2, and J3 are known. On the
other hand, it is quite difficult to set uy a general expression for
maximum increase of s~eed w- relating to the given parameter values.
In each specific case _ is also easl.lycalculated. To establish the
abscissa value for which w attains its maximum, consider a pair of
straight lines (fig. 8), radiating from point (-to, 0) and symmetrical to
the vertical t = -to. Assume that this set of straight lines, starting
from a very flat sloye with respect to the t-exl.s,becomes progressively
steeper until it meets the curve C representing s(t) for the first
time. The titersection point gives the desired abscissa value. Actually,
the pair of straight lines can be regarded as geometric representation
of the numerator of w in the particular llmitbg ~ositlon, since no
proportionality factor is involved. b that case w ~1 and the equal
sign is reached exactly in tiat particular point. NaturaUy, w- can
occur at several potits. The difficulty of a general determination
of w- arises from the fact that different cases have to be distinguish
depending upon whether the maximum point lies within the central arc
of C or at a petit of disconttiuity. The general exsudnation is
restricted to the dete~tion in place of W- to the hfgher of the
two velocities which correspond to the two points of discontinuity,
indicated as w* and noting that in many cases w* = Wmx. For the
equation w* = w- certainly applies when C has a straight or even
slightly convex central piece, and indeed, it is then fuJfiUed for
all values of’ to. It also applies for slightly concave central piece
in certain conditions. The subsequently discussed optimum diffuser
forms show this characteristic practically generally, which physically
tiplies that the mudmum increase of speed occurs at one of the two
end points of the diffuser nose. At any rate the difference of w-
and w* h the diffuser ties treated in section IV is significant.
The value of t = -tl or t = -t2 corresponding to the higher speed is
readily.apparent. At fixed s(t) em.dvariable tb a reversal takes
place when to passes through unity, or when the apex of the two straight
lines falls in the straight extension of the line connecting the points
of discontinuity of s(t). With -tj signifying the abscissa of the

point of intersection of this extension with the

2t~t2 - tl - t~
t3 =

t~+t2-2

t-axis

(3Q

.,

.-

—

d, “

--
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After exaudnation of the different positions successively the
result is as follows:

(a) ts~o

(CL)tosl

(P) to?l

(b)o@3<l

(CL)to ~ Ig

Wi

Wi

(P)tsstosl

(c) t~ >1

(a) to ~ 1

to 1 t* - to
: Wa :W*=

r ‘iTT:~
l+f(tl~

.

(32)

to 1 tl - to

‘i
:wa: w*=

r1 + p t1t2
:m:l-

%

to
Wi :Wm: ‘2 - ‘o

W* =

r
1 + p tlt2

‘*’t@

to 1 t.2 - to

‘i
: Wm :W*= :

l+13:t2-1
1 + P~~2

to 1 to - tl
Wi : Wa :W*= :

r1 + p tlt2
l+j3:i=q-

(32)
to 1 to - ta

Wf :wa: w*=

1 + pq~
‘1+p U2-1
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The case
.

tj . 1 does not occur; tj ==J, thatis tl+t2=2 “

can %e incorporated under (a) or (c) (a, ~),
.-

The ratio of the epeeds Wij Wm, and w* permits & appraisal
of the mode of operation of the inlet diffuser. In addition the
wall thickness d, meas”wed, say in ratio of 1/2 inside width, is
important. By (U)

h

.

(33)
—.

The question posed in the introduction concerning the best possible
desl.gnof diffuser contour can now be formulated as follows:

-.

The parameters tl, t2, and P shall be so defined that .-

(1) The quantity
:

8 becomes as small as possible

(2) At variation of Wi : Wm withti a specific range, tkt

.

is, at variation of to within a corresponding interval, the quantity
w- (or w ) is the smallest possible with respect to the higher of
the two ve~ocities Wm and Wi.

2 - The Question of Most Favorable Choice of Rar--ter

A mathematically precise treatment of the opttium problem presents
great difficulties even with W- instead
reasons for these complications. First, it
fixed ratio w : Wm,

$
to make the problem a

Either assume ixed b and def&* tl, t2,

that (33) is complied with and ~ becomes

‘*
a

~ and attempt to rf3mce 6 to a minimum.
w

of w*. There are two
i6, of course, eaey, for a
precise minimum problem.
13,and to In such away

a minimum, or else spectij

But at variable wi : w=.
on the other hand, ~ i’snaturally variable also, and a precise

formulation of the minimum problem is not possible without option.
Second, the complicated form of the function s(t) pieced together
from several analytical functions is disturbingly noticeable h the
calculations and the attempt to restore the organic character of a
uniform function introduces new difficulties. For this reason it was
decided to set up rules based upon the geometrical view according to
which the parameter values are chosen to suit the purpose. Everything
else is left to the special nwmrical calculation.

.

.
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.

.

(a) The case of constant velocity ratio wi : Wm is analyzed first.

The numerator function of the expression for w, represented geometrically
bY a pair of straight lines (gl’, ~’), IS visualized as ffied~ ~

a certain increase of velocity is admitted, the curve C representing
the denominator function s(t) must be situated ti a part of the (t, s)
plane which is downwardly bounded by a certain pati of straight lties
(L31,+). This pair has the same vertex point as (gI’, ~’) and has,

like (gl’, ~’), a vertical Itie of spetry. ~e~ (glj 432)canbe

regarded.as geometrical pattern of the numerator fumction, since constant
factors are not involved.. The lest diffuser is oltained when the
infinite angular space available for C is utilized to the best advantage,
that is, the curve is as close as possible to the loundary. There are
two possibilities. The first consists in chooshg the central piece
of C straight and placing it immediately on gl or ~. This way

a two-parametric continuum is separated from the three-parametric diffuser
continuum defined by tl, t2, and p; PO is obtained (20) through tl

and -tZ. This two-parametric continuum decomposes in two partial
,

groups; one, characterized by ~ as carrier of the straight pert of C,
is the ~oup analyzed by Ruden particularly. The two parameters tl

ati t2 permit, as will be seen, the realization of any velocity ratio

‘i : Wm : wm. For Ruden’s group, Wi < wm.

The second possibility consists in placing a point of discontuity
of C on both gl and g2 and choos~ 13 very small so that the central
piece of C clhgs very closely to gl ~ g2. The l~t~ case ~ = O
leads direct to the pair of straight lines itself; the corresponding
diffuser consists of two infinitely thin straight walls and represents
the optimum solution for wi = wm.

(IJ) Suppose the ratio ~ is variable. The case of ~~ited
m

v~iation serves as basis, but wi and Wm themselves are visualized

as varyhg only between zero and a finite 15mit. Tn this event the
fixed numerator function previously represented by (gl~ g2) iS replaced

by a two-parsmetiic continuum of numerator functions. What part
of the plane do the corresponding pairs of straight lines cover?

The titersection points with the ordinate axis cover a finite
interval starting from the.zero petit, while the vertex points cover
the entire negative half of the t-axis. To vertex points of very
great distance correspond very flat pairs of straight lties, that is,
very small values of wm. The measure of rise varies altogether between

zero and a finite value as exemplified h figure 9. The space filled
by the pairs of straight lines is itself bounded by a pair of straight
lines which again is denotedby (gl, gz).

.
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3 - Theory of Best Diffusers for Fixed Wi : w~
.

The diffusers for which the curve C exhihits a &tiaight central
piece are characterized by the condition

2~(1 - tl)(t2 - 1)
P=PO=

t2-%
(34)

The line connecting the points of discontinui~ meets the abscissa axis
in point -ts, where t3 shall now be positive. Putting to = ts

(31)) gives the normal operating condition of the diffuser, for the
point (-t3, O) corresponds to the vertex poin.tof (gl, g2). Since

w- = w*, by (32)

2t~t2 - t~ - tz
‘i:wm:wmax =

(tl+ty 2)(1 + pd~”)

1 t2 - t~
.—
“l+13:*1+t-2fort3 <l

,. (35)

for 13 the value (34) is inserted.

Equations (34) and (35) are now used to compute tl, t2, ~ @

for prescribed ratios ‘i
: Wm : wm. From

tl)a

follows

1-
~2=(t1+ ~-2)2

(t2 - tl)z
.(l+P)QEL

2
‘Max

.

—

.

. .

.
.

.

.
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hence

.

or
2.

‘luax
~m2

P =
2 2w- + %1

The applloation of this value gives

(tl+~ -2)2

(tz - tl)z

4W=2 W-2

= (W=2 22+Wm)

or

Let

this

t1+t2-2 %mx‘~
~-tl ‘*w=2+wm2

tj be less than

case (37) carries

1, that is, tl + tz - 2 he gxeater than

the plus sign; am (37) iS mitten in the

hence

(36)

.

(37)

o. In

form

t2 - 1 (w= +Wy
—=
1 - tl (W= - wce)~
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According to this relation put

1 - t~ = X.(WH - WW)2; t2 - 1

or

Jq=l - X(WH - Wy-; t2 = 1

tq =

●

and after a simple

le used for detemnining

%t2-tl-t2=~-k
t~+t2-2 2

calculation

NACA TM u67

.*

=X(wm +Wy

-.
—

+ A(W= + Wm)
2

h.

(W=p - W.2)2

w= Wm

—

.-
—...

.-

W*

This eqpation contains
and square root leaves
roots are

?V1=

only X as unlomwn. The remcnuilof denominator
an ordinary q-atio equation for h. Its tWO

2-W-(W=2 - Wiwm)(w. - WI)

(W=z - Wmz)z (W=p + Wiz)

,—
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and.

27

The second solution proves useless or at least dispensable. It
leads to to = O, a result that applies 0D2.Yto Wi = O. But
for wf = O, Al gives a value that exactly agrees with L2.
Therefore ~ut X = Ll, so that

2WH +%2 (w- +Wf)z
‘1 = 2w- +wf2 (w= +wm)2

and

W=2 + wm2 (w= - Wi)z
t2 =

2 (WH -Wm)zw@ax2 + Wf

For the present the calculation gives tl and t2 h the form

tl=l-

tz =1+

2WH(W=2 -Wiwm)(wm -Wi)

(Wmz 2+ wf2)(wH + w-m)

2WH(WH2 -Wiwm)(wm -Wi)

(W=z 2+ wf2)(W_ - Wm)

(38)

(39)

These expressions indicate that ~ >1> tl only when wi < w.;

therefore (38) applies onllyto this case. ~fs limitation iS linked
with the previously made limiting assmption ts < 1. AS is immediately

.
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ayparent from (39), tl + t2 - 2 is

for wi < wm. l?or tl +t2 - 2<0

Then

NACA TM L267

.

actuaJly >0, that is, ts <1

the minus sign is carried in (37). *.

tp-1 (w- -wm)a
—=
1 - t~ (w- +Wm)p

—

and a similar equation as above gives

~=2 + wmp (Wm - Wi)a

tl =
W=2 + Wi2 (w= -Wm)a

(40)
+W.2 (Wm + Wi)p

% ‘w-:
w= +wi2 (w= +wm)2

—
—

8—

.-

‘Thu compred to (38) only the expressions for tl a~ ~ are exchanged.
..

It is easily checked that t2 >1 > tl is exactly fuh?il.ledfor

Wi > w., and that for Wi >Wm actua13.y tl+t2 - 2 <O, as it must be.

With it the problem of defin~ 13,tl, and t2 for prescribed

ratios wi : wm : Wm is completely solved. For Wi <wM equations

(36) and (38), for Wi > Wm, (%) and (40) must be applied.. The case
of WI = Wm @ technically ofno interest emduthematicaUy trivial.

Tn conclusion, the quantity 5 is computed.

.
—
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r 2W=2
l+13t~t2=

W-2 + vi2

tl + t2 2 +W 2
. ‘max m

2
“max2 + wi2

w 4
● l-w 2(W 2 + WL2 - 4wiwm) + wi%m2.

m9xrn

(W=z - W.2)2

4
‘max -1-w-z (Wmz + w~z - 4w~wm) + w~%%z

(W-2 + wi2)(W=2 - wm2)

whence after an easy calculation

,=(Wm- w#

2 2
w= - Wm

(41)

This tiportant formula of Ruden’s theory is obtaimhle without tifficulty;

it i.svalid for wf ~ Wa.

Another interesting aad practically tiportant result is the
following: the qumtiti.es denoted by WI, w., and W= correspond

to the normal operating condition and are now written with capital
letters. When smy desired operating conditions for a fixed dfffuser
are to be studied, the equation system (32) is used with general to-
instead of (35); w* cm then also be replaced by w-. By

limitation to wf < w., and tak3ng (36) and (38) into account where
capital letters are used at the right-hand side,

[

‘1 - ‘o
1 - tl

for to~ ts

w-z + Wf 2 2
;%3x + Wa

{

t2 - to
Wi:wm:w= = to : forts~tosl

2WH2 2W2max ‘2-1

to - tl

1- tl
for to > 1

L
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whence

WJ
When the ratio — gradually increaees from O, to increases

Wm

correspondingly. The ratio = decreases conttiuously so
-co

to remains less than unity; then it

smallest increase of speed occurs at

rises agakfor to> 1.

to = 1, that is, for

long as

Thus the

Wf WH* + wi*
—=
w
m w-a +W.2

.
—

In figure 15 the velocities at the end points of the nose of a specific
.

1(WI w-
—=0.4;7=W. 1.2

)
are represented divided

m
w#

Ruden inlet diffuser

by the flight speed, as function of & ●, the higher of the two syeeds
‘m -.

is Wmx. The diffuser
efficiency. This

shows a distinctly demarcated range of favorable
range is given by

W=* +wi*

W-2
2

+ Ww

can be computed by (41). Figure 14

..

w~
are given, —

WmWa

in Ruden’s report

—

(reference 1) represents this relation graphically

= constant in a (%% J P~e* ~~s fiwecurves WJ
Wm

by the

is now

()

Wi—=
‘M n

\wm” / w=*+wi*
addition of the curves = constant;c1 D

..
complemented by the

coutant replaces

w
IY

-’. + Wm’. .

[)~=constant ‘i
Wm J— = constant

‘m O
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WH* + wi*
replaces = constant in order to indicate that the

W=* + wm*

upper and lower limit of the favorable efficiency range are included.
Figure 10 makes.it possible to define the limits-of the favorable

wefficiency range for prescribed values of 5 and ~.

The second diffuser

very simple. The vertex
toward (-1,0), while the

put equal to unity; w*

w~ :Wm:

hence

type for fixed

of the pair of
straight llnes

coincides with

1

Vicn

Wi : Wm is mathematically

straight lines is @aced
themselves rise at 45°; to

1

P = ‘-w - ‘w”
m

r ‘mix - w~ ya
‘lt2 = w

—
-Wmw

i

is

(42)

(43)

‘max - ‘m ‘i tl+t2-~-lq
5= w —

m %ax 2 ‘msx

To keep 5 at a minimum, quantity
t~+~

must be reduced to
2

a mtiimum. The geometric mean of tl and t2, ~~ is defined

by (43); the arithmetic mean * (tl +t*) becomes a minimum when

tl and t2 are made to come together as closely as possible. As

t*>l>tl 1s to le valid, the optimum is only approximately

attainable.
6

For Wi <wm, tl >1, and the optimum is represented by
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.-

(Wmx - WJ2 w+
~=1, t2=tp2=(wm-w)2~

m
.—.

.

..
For wi > Wm these values must be exchanged for tl and tz. In any
case

qwmz + Wiq‘max - 2w-wiwm(wi + Wm) + 2wi2Wmp

‘ariz(wm - Wm)2

tl + tz
2=

and
.—

Wm(wm - Wi)z
b=

2wi Wm(wmax - WJ (44)
.

‘I!M.svalue is now indicated by
givenby (41):

5* ad. then compared with the values .

I

5* =,6
W=(W- + Wm)

%i Wm

The quotient
5
& is in any case greater than unity. The second

diffuser type is, therefore, inferior to the f~~t. For verY -l
and very great wi : w@ 5* must become substantiaU_y greater than 5.

Because for wi <Ww:
.

W-(WH + Wm) w&?wm Wm

2wi Wm >—aqwm”~ (45)

emd for Wi >Wm:

W-(WU + WJ Wi(wi + Wm) . ~ Wi

2wi W.m
>

Zwi Wm ()2Tm+1
(46)
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Wi
so that — constitutes a measure for the minimum

Wm

experiences with respect to 5. Ih (45) and (46),

33

increase which 5*

w- was replaced

hy the greater of the speeds Wi and wm. Consequently, the estimtes

are much better as the speed increases are smaller. But small

speed increases correspond to small parameter values B.

4.- Theory of Optimum Diffusers

In this instance three types of
first two, C has a straight centrsl

for the third ty_pethe central piece
and ~. The straight Une gl runs

for Any Vsriable Ratio Wi : Wm

diffusers are involved. For the
piece that lies on g2 or gl;

of C is curved and touches gl
psrallel to the t-axis, while g2

passes thro~ the origin of the coordinates.

The first type was theoretically discussed; it belongs to the Ruden
group. NOW, however, the reference point to must be chosen general,

and at the same time the relation t3 = 0, that is

2tlt2 - ‘1
-t2=o (47)

must be observed. m (34)

4(tl +ta -1 - tltJ
P2 =

(ta - tl)a
;

the insertion of

according to (47) gives
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or d~f erentl.yexpressed

Accordingly b Is computed aq follows:
—

C(2 -(+=*(’-,)5=__JL_-. tl+t2
1 + B t~t2

.
.
—
—

-.

Since Wmx = w* the velocity ratio follows as
.

{

ta - to
for to ~ 1

t t2-1 .+
Wi:wm:wm. = : 1

2

r

:

1+ J-
to-~

—

t~t2 1- t~
for to 21

Being chiefly interested in the case of very high values of Wi : Wm,

to is acoordhgly p.zt~s to-m, so that

A

It is then readily apparent that tl must be greater than~.
Therefore

—

%!ax 2
—>—= 4
Wi

1-$

However, since speed increases of this order of magnitude are
inadmissible in practice, the first type is unsuitable for the present
purpose.

—
. .
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For the i=mndtym, P = 1 am tl +tp = 2. Again Wm =w*,
hence

to &

‘i
: Wm :Wmax= r ‘2:

1+ ‘lt2

[

‘2 - ‘o
tp-1

for tos 1

to - t~

1- t~
for to al

For very high to values

with tl = 1 - a, ~ = 1 + a. By proper selection of a the last
ratio can be made to approach unity as closely as desired, so that
in this respect the conditions are much more propitious thsm in the
former case. On the other hand, the conditions for medium speed
ratios are stilJ.too unfavorable. For from

WI
when assming ~ Z 1 and hence to < 1, follows

m

t2-tow l+a-to
W==2 m =2 Wm

‘2-1
a

(

2wm+2wm-

)

l+mwi >-=
a 2

m

a result useless in practice.

The third type is characterized by the fact that C touches
gl and gp’. The Points of contact have the abscissas -tl and -t2.

The equation of the central arc of C iS by (29):
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~2=(t+l)2- j32(t -t-tl)(t + t’2)

which, after differentiation and putting t = -tl, gives

~B Q
dt

= 2(1 - - #(t2 - -tJtl) ,

t=-tl

By assumption this expression must disappear,

This value, introduced
for t = -t2, gives

—

whence

(48)

h the expression of S2 and differentiated -.
.

ds
2s z ~=-t

= 2(1 - t2) + 21 --t:l (tp - t~) = 2~2 - t~ - tp)
ta

2

or, sinee s(-t2) = tp - 1:

ds 2 -tl-tp

G &-t2
= @-l

In order that C touch g2 this value must be

-t2-l
- —, that is,

tp

equal b

(2-t~- tJt2+(t2-02=o “.

.-

or

(49)
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%(48) SA (49)

or

.

Quantity 5 is expressed by

The
the

tl=._fzL
2- P2

P In the following manner:

8 +-(
~.

),2#-2 .m+l m-w
‘2(l+B2-p2 P(2 - P2)

connection letween P - b is numerically represented in
table as follows:

To keey 5
below 0.5.

P 1.0 0.9 0.8 0.7 0.6 0.5 0.4
5 0 0.03 0.13 0.29 0.50 0.% 1.39

‘i
: w=

within tolerable limits, P certainly must not
Formulas (32) then give (w* = w-):

F

2- j32- p2to

2(1-F) ‘or to

1“(2- p) to - #for

2(1 - P2)

fall

37

that is

(51)
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and.

NACA TM u267 ‘

● ✍

“1‘max=ii+%w”-m%”’forw-w” ~ “
(52)

.H=k&_ .+
2(1 - P) ‘i 2(1 - B) ‘m ‘or ‘i 2w~

>
for &am@e,

r

,(
1.75wm - o.25wi(wi ~ Wm)

‘- =
1. W“i - o.25wm(wi ZWm)

—
The conditions are seen to be much more favorable thah in the other
two cases. Nevertheless it is desirable to reduce the syeed increases
still farther without increasing 5. This is accomplished, geometrically
speaking, by placing the central arc of C! a little lower. Analytically,
this operation signifies a decrease of P for fixed values of tl

and t2, The corresponding wall thiclmese .=*(_,)

decreases with decreasing p, and, (51) being valid, the velocity w*
follows as

-J
A decrease of B therefore also acts favorably on w*. For extreme
values of WI : Wm, w- = w+ is, of course, no longer valid, and the

range of validity of the last equation diminished with decreasing j3.
The greatest increase of speed grows, in
The extent to which P is to be reduced
decided in each case individually.

any case, when j3 decreaees.
is a matter that mudt be

—

—
=
——

---

.-

.—

.
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III - EXAMPLE TO II, 3

39

It concerns Ruden’s dfif’userII (reference 2) with constant
incraase of speed. wm =.1.2 wm along the nose contour in normal

Wf
operating condition — = 0.4. BY (36) ~ (39), in this case p =% = 0.18,

tl .

nose

.

.

Wm U-L

488 122
-0.807 and t2=~=~-

24.4, so that the upper contour of the

is represented by

x=T- log T

0.807)(24.4 - T) + 4.55 arc an ~

~

- 1.6 arc tanllVT - 0-~7

2 q~

.
h . 1.% = 5.655 = one-half inside width.

Figures 11 to 14 give a comparison of the computed snd measured
Wf Pat

pressure distributions for four different — ratios. The ordinate —
~

is plotted a@nst the abscissa x, (as in ~eference 2) that is,
the ratio of static pressure p - pm to kinetic ener~ at infinity,

q=~=p. By Bernoulli’s equation

p+&2=pm+:wm2

that is,

.

.

.

.
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The quotient # is defined by the graphical method represented in I, 5.

The agreement b~tween theory and test is good. The larger discrepancies
at the diffuser exit are explainable by the effect of the blunt end,
while defects in workmanship are certainly noticeable at the mouth of
the diffuser. The only appreciable point of difference is that the
marked low-pressure peaks at the mouth are blunted ly friction effects

Wi
as ~ostul.atedly theory for very high and very low —. The exact value

Wm

d the maximum lo’r~ressure was, of course, not measured, but the
measurements give a fairly good idea of the pressure distribution along
the mouth of the diffuser. According to theo~ the m.ximum low ~ressure,
that is, the maximum velocity of the flow, lies always at one of the
end points of the nose contour. The velocities at these points,
each divided by the flight speed, are represented in figure 15

for variable ~; w- is the greater of-the two. The favorable..T

effective

visible.

Continue&

Wm
range, filling the interval from 0.4 to 0.66, is plainly

The dashed Une represents the ratio X for WI >W=.
W4

toward the right it

rv-

Three different types of

were discussed, but tha first

reaches the height o; 9.3.

EXAMPLE TO II, 4

w~
diffusers for unlimited~ variable ~

two were rejected because of excesslv~ly

. .

—.

—

—

high increase of speed even with great wall thickness. The third type
deyends only on one parameter 13. The values tl and ‘t2 for given p
are defined by (48) and (49). But, as stated previously after tl
and ~ are defined, ~ can be subsequently made variable again,

SO U to provide more favorable conditio~ for the operating range of

Wi
principal interest by foregoing extreme values of —.

Wm

start is made from p = 0.5, for which tl =$ and t2

tl +-t
f

has the value 7.14. This value is re@aced by
matica ly convenient value

t1+t2=8

Supyose the

=7. The sum

the mathe- —

(54) .

.
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which is equivalent to a slight decrease of the initial value for P;
this is now 0.47. Wtth

$=4+-=7.873

to be computed from (54) and (49) the equations (17) for ccmputing
the diffuser contours are set up:

d X.T - log T

In accord with previous studies, the values chosen for P are below
the initial value 0.47. Figure 16 shows the contours for p = 0.1,
0.2, 0.3, and C).4. Scale variations ensure tlpt all diffusers have
eqml absolute wall thiclmess d. The values of the relative

thiclmess b =: are also indicated.

Figure 17 shows the maxhm.m speed distribution for the four

Wi
diffusers plotted against ~Y which is,”for WI <w’m the ratio

m
‘max w=
— for Wi> Wm the ratio —. A decrease of p in the
Wm ‘ Wi

central range is favorable, at the ends, unfavorable. The others
refer to the case p = 0.4. Figures 18 to 20 represent the relative
pressure distributions for different operating conditions in comparison
with the pressure-distribution curves of figures U to 14.

.

.
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v- APPENDIX

l.- Variation of the Function

NACA TM L267..

@.&
d~I of t

. .

.

Writing x, xl, x2, and, y
H

instead of t, tl, t2, and U
d{

so as to conform with the conventional notations of ana~tical geometry,
the equation of the central arc of C reads

—

y2=(x+l)2- P2(X + Xl)(x + X2)

or

[ 1
—

X2(1 - ~2)-y2+x 2- B2(X1 + X2) + 1 - B2X1X2 = o
w

If a curve of the second order
●

a~x2 + 2al~ + ~2y2 + 2a13x + 2a23y + ass = O

is to le analyzed, the determinants

all au a13

A=. a21 a22 a23

a31 a32 a33

all au

’33 = a21 a22
● .

must be borne in mind. The decomposition of the curve in a pair
of straight lines is indicated hy A = 0, while for A ~ O

.-

—

.
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A=

1- p2

A33 >0 gives an elliyse

’33 = 0
a parabola

+2<0 a Byperbola. In the present case

o. -1 0

1- 1+=+= o 1 - 132x1x2

()=x2-x12
2 B2(B2- P02)

with

P. =

( xl++ )2= 1- p2

- (1 - $)(1 - pgx~x~)

,

Decomposition therefore occurs for

since 1 - po2 = % ‘% -2)2 .fe

(q - X1)2

and attains unity ody for xl

hence; hyperbolas when f3<1,
results in a parabola, or, for

of which only the one
evidence.

that

2-

Elsewhere w-
Wmx is assumed

straight

+X2

P = O and. P = Po, where, -

certainly not greiiterthan unity

= 2; A33 has the value 132- 1,

43

elliflseswhen P>l. The case 13= 1
X1+ +=2 in a pair of ~abolas,

line above the abscissa axis is in

General Determination of w-

had been defined geometrically. For the case
at an inside petit of the nose contour,
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a tangent Is ylaced from a given point’of the t-axis on”the conical
sec’tionto which the central arc of C relates. The corresponding
calculation is as follows:

(t + 1)2 -

or

[
(l-p) t2 +2-

while the considered.point

For computthg the tangents

aUx2 + 2al~

The equation of the conical section is

&’(t +t~)(t +t2) - S2=0

-.

1IHtl + tp) t + 1 - P*tlt2 “ + = o

has the coordinates t = -to, s = O.

from point (xo, yo) on the conical section

+ %2Y 2+

the “polar” of (xo, yo) with respect

Paly + 2a23y +asj = o

to the conical section

all=o +alp(wo + y%) + a*4cYo + a13(x +%) + %3(Y + Yo) + a33 ‘ o

are determined.

This straight line dissects the two constant points on the
conical section. In the present case the equation of ●the polar
is

-(1 - F) tto +

or

t=

1- P2
1

‘I;% (t-to) +(l-j3nlt2)=o .

J1- ‘)#l+t2t
2 0‘- (1 - P2 t~t2)

(

tl+~
(1- P2)to-l-P2~

)

.

—

b

.

(55)

—

.

.—
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The polar is no-l to the t-axis. Denot@ the value given
by (55) with -to’, gives

Wm—’~(l+p)%
that is

() 2
‘u
Wm

= (1 + P)2 Jto - ‘0’)2
S*(-t.‘)

A simple osculation gives:

()w-
2

4(1 + f3)2

% [
1‘(1-to)z-&(t~-to)(t2-to)— =(&-tyf(poz-P*)

P. is the value givenby (20); P is

holds for the case that the value %
hence for

smaller than j30.

rangee between ‘1

-1
(56)

The formula

and t2,

tl + t2

1- )( )p2 * to-1 -B2tlt2<

tl 5

(

=●t*
(1- B2)to-l-P2tl; t2

)

Dete-rminenext the two to values for which to’ = tl or

to’ et
2“ Tuese values are given by

;(%- t~)(l - tl)
ts=l+ “

1- tl - ~(t2 -t~)

and

$ (~ - tl)(t2 - 1)
t4=l-

P* (Figure 21)

$ -1-~ (t2 - tl)
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.

For

2(1 “-
P2 <

tl)

‘2 - tl

‘3
ranges “between 1 and ~, for

2(t2 - 1)

‘2< t2(t2 - tl)

NACAm 1267

—

tb lies between O and 1. If p satisfies these two ~equalities,

for.mul.a(56) holds for all to that meet the conditions O< to s t4

or to ~t3, while WH=W* for t4<~~t3. Eonly one of

the inequalities for P is satisfied, there is only one valldity
interval for (56), and if none of ltheinequalities applies, Ww = w*.

—

—

●

—

.

.

.



PART II

I - AUXILIARY l@UTEMATICAL EXAMINATION

Consider the confomml mapping effected by w = z + ~
z

in euch a way that z and w are made to vary in the same plane,
z being restricted to values which, geometrically speaking, lie
outside of the unit circle and above the real axis. The case then
presents a conformal mapping of a semicircularly notched half plane
on the entire half plane.

It is seen at once that

(a) each inside point is shifted nearer to the real axis
by the mapping

(b) the boundary points lying on the real axis all travel
outward, that is, for z ~ 1 toward the right, for. z~-1
toward the left, t

(’c)every boundary interval lyhg on the real axis is reduced
in its length.

These three facts hold, as will be shown, not only for the special
mapping according to z + 1 but very generally for the conformal;7

mapping on a half plane provided with any desfied notch on the full
half plane. More exactly the following is valid: (fig. 22)

Let B represent a stiple connected space in the u~per half of the
z-plane boundedhy the two.semistraight lines z ~ a “and z ~ b
(a and b real, a < b) qm a curved arc free of double points
connecting the puints a and b and with exception of the end
points running entirely within the upper ha~ plane; B is mapped
by the function w = f(z) on the whole upper half plane and the
mapping function existing according to Riemann’s mpping principle is
so standardized that the infinitely remote point tr~fonns in the
finitely remote point and that in the development

c1 C2w = Cz,+ co +— +— + . . . (C > O) applicable to the vicinity of
z Z2

infinite distance, the coefficient~ C! and co attain the values.1
and O (@mdardizationat rest in infinity, w = z + ((0)).
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in this instance
.

❑

(a) J(w) <J(,z) for all inside points

(b)w>z for z~b, w<z for z~a

(c) [W2-W1<Z2-Z1 for z2>zl>b and for z1<z2~a
(W1 = f(zf))

Proof:

For the first it is noted that the function w(z) cm be
analytically continued by the reflection principle beyond the
real sxis. Putting z =x+ iy,

w - z =W’ - u’ + iv!
.

and considering v’ as function of x and y, v’ is a regular
Potential function in the entire ~pace B, which on approaching the
infinite-remote point disappears. Along the boundary piece on

. -:

the real axis v: = O, along the rest of the boundary —

V’<o. Because of the regular behavior at infinity the validity
of v’ < 0 on the inside can be deduced from the inequality v’ < 0
at the loundary. Since v’ =J(w) - J(z) the claim (a) is there~ore
p“oved.

Let (xo, O) represent a boundary point of B on the real axis.
AS vt(~, O) = O and Vt(xo, y) <O for sufficiently

small positive y values ~ (xo, O ) is certai~ ~ o.

The equal sign must be excluded, for if # (Q, O) were equal
to O, then & as well as avI

~
would vanish in point (xoj O),,that

dw ‘is, the derivative ~ would be O at the partic@ar place and the.

development of ,w’ would assume the form ,-

w’=~+cLK (z-xo)K+ . . .

with .

.

●
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But then to a small two-dimensional surrounding of X. there would ,

correspond a multi-lobed surrounding of point ~ through the
mapping according to w’(z), and v,’ wotid have to assume positive
values in the upper half plane, which cannot he, according to (a).

au’ is <0 feral.1By the Cauchy-Riemann differential equations
&-

boundary,points of B lying on the real axis, that is, u~
decreases when traveling from left to right. As to the
disappearance of u’ at infinity it is seen that u’ must le positive
for z ~ b, whereas u’ assumes negative values for z~a. Rlt

along the real sxis U* = w - Z, whence the cla~ (b).

Lastly, for Z2 > 21 ~ b and for zl,< z2 5 a:

(W2 -WI) - (Z2 -z~) = (W2 -Z2) - (Wl -Zl) =U’2 -u’~

This monotonic behavior of u’ proves the correctness of C.

II - MATHEMATICAL TREATMENT OF GENERAL

The following investigation oontains four
all of which are in analytical relationship to

INLET DIFFU%ZRS

complex variables
each other. The first

variable, z, is the complex coordinate in the plane of the diffuser,
the second, W, is given by the value of the stream function, the
third, w, by the value of the complex velocity, and the fourth, t,
is a pure mathematiodlly explained auxiliary quantity. The range o?
variation of z is represented in figure 23(a). The dflfuser iS
assumed to be of itiinite length; it is to be symme&rical and bounded.
by two convex curves with constant direction of tangents, whose pieces
extending to infinity are rectilinear from a certain point on. The
convexity required for the outside is natural; b“~tat the inside wll
the limitation to convex ~orms tiposes a relinguishmbnt not shown
beforehand by physical-technical considerations. On the contrary,
the constructed.engine Co-wlingsused in practice for wi < ~ rather

exhibit cross-sectional enlargement downstream from the diffuser opening,
that is, no convex contours (fig. 23(b)). Nevertheless the limitation
is restricted to convex forms for the reason that the mathematical

analysts affor~s a stiple connection between quantity b =: (figs. 23(a)

and 23(b)).amd the velocity distribution along the contour; but the
quantity b is decisive only for convex forms in problems of engine
installation, while on forms with cross-sectional enlargement the

quantity 5* = & is decisive, the dependence of which on the velocity

dlstrihution is far more com@icateii.
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. .
Wi

Only one flow ~hich corresponds to a specific ratio — is
w=

investigated. It is represented by an analytical function W = F(z).
Putting W = U + fV, the streamlines are givenly V = constant;

w = * is the complex velocity whose co~ugate complex value

represents the actual velocity in magnitude and direction. The
function F(z) can%e replaced by CW + c’ with positive c and
any ccmplex Ct without altering the flow pattern, lecause only
a multiplication of the comylex velocity by a constant positive
factor is effectid, which is equivalent to a variation in mass unit.

E& W=F(Z} the z space is mapped on a syrcunetricalslot region
which is, the slots run parallel to the real axis
rightward to %nfinity. By taking advantage of the previously cited
freedom in the determination of W, it can be assumed that the two
slots are given by V = M, U ~0 (fig. 24).

The quantfty w = ~ varies in a symmetrical space lying

entirely within finite limits. Putting w . peiT, the actual velocity is
indicate& by pe-fT. The boundary values of T are given directly by
the ?ifffusercontours, -T = arg dz, where, it is tiue, “theorientation
of the line element still remains questionable, that is, T is defined
up to multiples of m. In any case it follows from the assumed convexity
of the contours that -r varies monotonically, if the contour is
followed from the stagnation point to infinity in one or the other
direction. The further study is restricted to the upper half of
the z space. The inmge of this half space in the w-plane is bounded
by a length lying on.the real axis, which corresponds to the
line of symmetry of the diffuser and the two straight walls,
and by a curve arising from the curved part of the diffuser contour.
The curve proceeds entirely in the upper w-plane when the stagnation
point lies on the outsfde diffuser wa~; it runs in the lower half plane,
when the stagnation point lies on the inside wall; it splits into two
arcs, ,each belonging to a half plane, when the stagnation point is
a point of the curved contour. In the latter case the two branches
of the curves meet in the zero point of the w-plane and have a conmon
tangent for w = O. b any event the curved part of the boundary of
the w-space Is free from double points because of the tionotonic
variation of’ T; from this it can be concluded without difficulty
that the w-space must be a smooth, that is, single lobed, space. The
figure 25 represents potential space forms. The zero point is always a
lloundarypoint. The wi and ~ indicate the velocity inside the
dfffuser and.the flight speed.

b

—

..

.:

—

--

—

.
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When the w-spa~e with the yoints WI and Wm is given, the

diffuser design is defined. For the w-syace is mapped on the W-space
of which only.the upper half is taken into account; w = O changes
to W = fii,while to wi and Wm correspond the two infinitely

distant boundary points of the w-space. The invariably existing
mapping function W(w) enables z to le computed as function of w.

Since

W=g

According to It z appears to be determined up to an additive constant.
The other possille similarity mappings ti,the z-plane follow when it
is remembered that the quantity W is.arbitrarily normalized by the
foregoing, and that truly directional similarity nm,ppingwith C) as
central point in the w-plane is admissible.

Since pressure and velocity distribution are the chief factors
governing the quality of the diffuser, the usual process is to
proceed from the velocity patterns and to determine the contour
according to it.

In the present report the holographic method is resorted to.
But, while in reference (1) the amount of the w-spaqe was automatically
restricted by the assumption that the curved part of the contour is
a half circle, no special assumption is made here.

It is convenient to replace-the W-space by a half plane, putting
W=t -logt+fli -1. It is readily verified that by this relation
between t and W the W-space is, by appropriate fixing of the logarithm,
~pped on the upper half of the t-plane. The two infinitely distant
points of the W-space correspond to the points t . 0 and t . rn,
while W = fii changes to t = I (fig. 26).

.
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The w-space must accordingly be mapped on the upper haJf plane
by means of a function t(w), the points O, wi, W. must change
into 1, 0, m, (fundamentalmapping of w-space with boundary normalizing).
The corresponding diffuser form is then defined by ,

III - A GENIFML TEICKNESS FORMULA ,

The main object of the present note is to prove the fact that
for fixed walues of Wi, Wm and w- the corresponding wall thickness

of the diffuser cannot became less than the value computed by Ruden
for the case of cobzrta.ntincrease of velocity along the”nose

(Wm - 2Wi )
2 2

‘mm - Wm

,

.

-.

.

only Ruden’s diffusers reach the minimum value.

To be able t~compute the qpantity b for any desired w-space
only the behavior of the function z(w) near Wm needs to be lamwn.

The quantity t becomes infinite for W. in first order and has a
development of the form

*

t=+ + reg.
- Wm

—

with f positive for wi < Wm and negative for Wi > Wm It iS

to be noted that t(w) over an interval of the real axis
containing the point Wm on the inside certainly can be continued by
the reflection principle.

.
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Accordingly

1 ‘-wm-=—(1+((0)))t f

at f
FT=- + reg.

(w -Wm)p

()
1-+ ~=-

f + 1
+ reg.

(W-wm)p W-wco .

where reg. indicates a function reguiar for Wd ((0)) one regular for

Wa and disappearing in w= itse~. ~Adding the development of w

1.1 —- -A-(w-wJ +.,..-—
w Wm wm2

gives then

J[1z=—- 1fi(w-w m)+...
w
co w

f 1
+— 1+reg &w

(W-WJ2 ‘-w~

From this
iuginary

formula the amount of d + h, that is, the variation of the
component of z on passing through ~~ can be taken at once

()

d+h=yc~+~
wm2 Wa
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Quantity h is correspondingly given ly the variation of the =ginary
component of z on pa5sing through wi. In this Instance

t=c(w - Wi) +... c#o

111.=. —
t Cw + reg.- Wi

()1 -L Q.t=-
t dw

l.l+-——
w ‘i

‘=k+((o)w+re’]
that iS, h“= ~; hence

‘i

d+h—-5+1.
h-

and

1 + reg.w - Wi

((o))

dw = -A log (w -WI) +reg.
Wi

~(f +Wm)
WW2

Wiww -W2)
m

While in the.formulas for h and d
of “W plays a part, the formula for
validity. The quantity f, that is,
has the dtiension of a velocity. At

b iB SOlely dependent on f.

+h
5
the

the arbitrary standardization
is of-completely general
residuum of t in point w_

fixed values of Wi a= Wd W

The thicbess formula is now used to compute the wall thiclmess
of a Ruden type of inlet diffuser. The w-space is a half circle; the
center is the zero point, the radius iS W- @ for wi <wm the

half 6ircle lies in the lower, for Wi >W in the upper ha~ p~ne,

The mappi~ fuznctiont(w) is a rational function of tie second degree,

WH.2
with zero points at wi and — 9 while ass,umhg the value M for Ww

Wi

.

.

.—

-

—

“-

—
—

—

.

.—
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.

Accordingly

a@ the constant factor gives the value 1, since t(0) = 1. The
residuum for w~ is

f_ k-.i)(%-%!$)

2w~
wm-~

m

= (Wm-wi)
(W-2 - Win-f) w=

(Wna# - w 2) Wiw

1

hence

[ 15.: (wm-wi)w-2-y+wi-wm.(w~-wf)2
m 2

‘max - ‘m WH2 - wm2

rv - I!ROOFOF THE MINIMUM FORMULA

A piece is but out of the w-space B of figure 25(a) (wi <w-

stagnation point at ihside wall), as tidicated in figure 27(a). What
is the variation experienced by 57 According to the cited thiclmess
formula it is sufficient to analyze the variation of f. It is f >0.

The reduced space is denoted by B’. The function t(w) that
maps the original space on the half plane is regarded as known. The
mapping function t’(w) for B’ is then obtained in the following
manner: first map B’ by means of t(w); the result is a half plane
with a notch. This is then mapped ly meam of a function t“(t) on
a complete half plane, the mapping to he standardized at imfinity
according to the formula t“ . t + ((o)); t’ is then a whole linear
formation of t“, t’ = Xt” + ~. Hence, since t’ as function of t

at infinity has a development t’=.ht+w+++%.., the relation
$

f’ = Af holds for the residues f and f’. Quanti@ A is definedby
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the condition that points O

t’ =(). Hence t(0) . 1 and
the interval (0,1) is reduced
the interval. Accordingly h
hence

NACATM 1267....

.

and Wi shall change to t’ =l-and

t(wi) = o. At transition from t to t“.
in any event, since the notch lies outside .

must definitely be gr8ater than unity,
.—

f’>f

The wall thickness therefore increases as the w-space is reduced.
When the w-space-increases, b decreases accordi~, SO, if a s~ecific
w- is given, which may be attained but not exceeded, ‘fiew-space
may not extend beyoDd the circular space lw~ S w-. The wall

thickness is a minhmxn when the space available is com@etely utilized,
that is, when the agmunt of the velocity along the entire nose is made
eq@l to WM. This proves the mitium theorem for WI < Wm when

asm.uningthe stagnation point located at the Inside wall.

Next, the stagnation point is placed on the curved portion of
the contour, while Wi <wm (fig. 27(b)). b this instsmce my increase

of the w-space in the lower half ylane is again associated with a
decrease in 5. This decrease in b can be continued ffither by
reducing the part of the w-space situated in the upper hqlf pl.ane~
This is readily verified by the mapping t’(w) of the reduced space

as above) Xssiw though t(w) to a half plme with a notch, then
completing the transition to t“=t +((o)) and to t’=ht+~.

The difference now consists in the notch in the t-plane lying
between O and 1, thus increasing the interval (O, 1) to t“ on
transition. Therefore A <1 @ f’ < f, that is 5 becomes smaller
as claimed. The entire piece of the w-space lying in the upper half
plane is omitted, wherewith the stagnation point shifts to the inside wall.

The optimum wi”titithe group of convex diffusers for specific Wmx

is therefore actually reached by Ruden’s inlet diffuser.

If Wi >Wm the proof is entirely analogous. The residuum f .

is then negative. A notch in the w-apace of the upper half @ane aypears
then In the t-plane between O and 1 and results in X <1.
Accordingly f’ = Xf >f, and b Increases. It is seen further
that a piece of the w-syace lying in the lower half plane must be
reduced, in order that 8 decrease. The opthnm w-space for a given
w- is therefore the half circle Iw ~wu, J(w) ~0.

●

——

..

.
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V. CONCLUDING RINMRKS
. .

.
The subsequent discussion is limited to the case Wi e wm.

As already stated, the diffusers used in practice eihibit cross-
sectional enlargements downstream from the diffuser orifice (fig. 23(b)).
The corresponding hodograph record is given in figure 28, it being
assmned that the stagnation point lies oa the inside wall. The

quantity b = ~ can be reduced.below Rtien’s value, if the hodograyhic

picture is so chosen that, aside from the straight piece, the lower
half of the circlg Iwl =Wm, and between O and wi an arc

running in the lower half plane takes part on the demarcation.

The nearer the last arc is pulled to the remaining part of the
rti, the smaller 5 ;becomes. The value 5 = O is attainable. However,
two facts should be borne in mind.

.

First, the quantity governing the practicability of the diffuser

. iS 5*=~, not ~=~ ~, so this quantity would have to be analyzed in

relation to the w-space. The resulting relation might not be as simple
as for 5. In any case it is doubtful whether 5* varies in general,
as b, and to what value 5 may be reduced.

Second, the study of inlet cliffusers of constant internal
cross section can be restricted to Wi : w~ : w- and 5, but not

on the forms consid.eredhere. Ruden’s cliffusers indicate considerable
regulating capaci~ and operate nearly without loss to the extent“
that the conversion of veloci~ to pressure is essentially effected
upstream from the diffuser mouth. To forestall “excessivevariations the
section enlargement must be done very carefully, that is, the holographic
pattern must not depart very much from Ruden’s. In any case, constant
increase of speed along the curved part of the outside contour must be
specified for the design operating condition, and the smallness of the
notch E (fig. 28) vouchss for the,outside contour itself not
deviating perceptibly from that by Ruden. To this extent the mintium
formula proved in this report is of practical significance in spite of
the limitation to cons-teatcross sections. Forms with cross-sectional
enlargnents are to be Mscussed in a subsequent report.

Translated by J. Vanier
National Adv~sog
for Aeronautics

.

Cknmnittee

.
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Figure 1.- Schematicalrepresentationofthe
correspondingflow.

difkser contoursand

Figure 2.- Schematical

-~

representation of a flow in the parallel strip.
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Figure 3.- By dz/d~ theparsllelstripismapped to a region
symmetrical withrespecttotherealaxisbounded by an
ellipse,a finiteand an infinitepieceoftherealaxis.

Figure 4.- By t = e~ theparallelstripismapped to a plane
thatiscutalongthenegativehalfoftherealaxis. The two

lateryi&d thecurved partsofthe
boundarypiecescorrespondingtotheinterv~ [-t2,‘t~ will

diffusercontour.

Figure 5.-

t

dz/d!~ plotted against t(t < O) for variows values of
P(tl and tz fixed).
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Figure 6.- The zone of variationof. the complex velocity w according
to P. Ruden..

w’/a%!%z

Figure 7.- The conformal mapping of the t-space on the w-space.
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Figure 8a,b. -“ Maximum velocity is reached either at a sharp bend
of C(a) or ata pointofthecentralarc (b).
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Figure 9a,b. - If Wmu is to stay beneath a certsin limit, the curve C
must not approach the t-axis too closely. For fixed values of Wi
and wJa), as well as for variable values of Wi and w.(b), there
always results a space bounded by three straight lines from which C
must not emerge.
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Figure 10. - The favorable effective range of a Ruden inlet diffuser is

() ()~~<wigiven by ~+ Ww . Ww , The figure represents the two
u o

boundaries as functions of Wm= IWL and 5. The curves

(wi/wJ = cOllSt.o show in the neighborhood of Wmu /% = 1
a variation similar to the curves (wi/wm)u = const. They are nut

fully drawn for reasons of clarity.
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Figure 11

Figures 11-14 .- Pressure -distribution curves for a Ruden inlet
diffuser. Normal operating condition: Wi/Wa = 0.4;

‘maxlwm = 1.2. The solid curves represent the theoretical
pressure distribution along the outer wall, the dashed curves
the theoretical pressure distribution along the inner wall.
The circles correspond to the messured values.
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Fifrure 15.- The velocities at the end points of the nose of Ruden’s
‘inlet diffuser II as functions of wiiw~. At the top is shown one
half of the diffuser with points a and b.
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Figure 16. - Inkt diffusersoftbethirdtypeforvariousvaluesofthe
psrameter $. tl= 0.127;tz= V.873.
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Figm?e 17.- Maximum velocities for the diffusers shown in figure 16.
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Figures 18-20.- Pressure-distributioncurves fortheinletdiffuser
P = 0.4 offigure16.
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Figure 19.
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Figure 20.
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Figure 21. - For calculation of Wmax.
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Figure 22.
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Figure 23.
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Figure 25.
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